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LO3S OF STABILITY OF THIN E ASTIC SHN'LSO UNDER THE

EFFECr OF IMPULSIVE LOADS

(0 POTEME USTOICHIVORI TONKIKII UPRUGIKH OBOLOCHEK

POD DEISTVIEM IMPULSIVNOI NAGRUZKI)

by

V.V. Bolotin, G.A. Boichenko, B.P. Makarov,
N.I. Sudakova, and Yu.Yu. Shveiko

We propose to discuss the problem of the stability of a cylindrical
panel resting on a rectangular boundary, under the effect of a normal im-
pulse which is characterized by a rapid increase in load to a certain magni-
tude and subsequent decrease according to the exponential law. Our main ob-
jective is to construct a range of parameters which characterizes this im-
pulse and in the presence of which snap-through buckling of the shell does
not occur (i.e., stability "in the large"). The effect of the initial com-
pression and damping decrements on the boundary of the stability region, as
well as on the maximum deflections attainable under the effect of the im-
pulse are investigated.

1

Partial differential equations of the nonlinear shell theory are, by
applying the Papkovich-Galerkin method, reduced to nonlinear ordinary dif-
ferential equations and solved on continuously-acting analog computers (in
this work the MN-7 computer was used).

1. Basic Equations. We shall use the basic hypotheses of the non-
linear theory of thin elastic shells [1, 2] assuming that elongations and
shears are small in comparison with unity and that the deflections of the
shell are comparable with its thickness, though small in comparison with its
other dimensions. We shall also assume that the Kirchhoff-Love hypothesis
remains valid in the case of finite deflections of the shell as well.

Under the assumptions made, the deflection equations of the shell
with principal curvatures kI and k2 have the following form:

1One of the authors presented this paper at the conference (3) on elastic
oscillations at the Institute of Mechanical Engineering of the Academy of
Sciences of the Latvian S.8.R. (Riga, June 1958).
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Here wo(x,y) is the initial deflection, w(x,y,t) is the complementary de-
flection, x and y are the coordinates computed along the lines of curva-
ture in the middle surface, D is the flexural. rigidity, E is the modulus
of elasticity, h is the thickness of the shell, *(x,y,t) is a stress func-
tion of the middle surface stress-resultants related to a unit length.

62, 2 2*N 2 N 2 z=2- (1.2)

ay y C)x2  xy

The symbol L(AB) denotes a bilinear operator

a A62B 2A 6B a 2A 62BL(A,B) +2 A 2 B 2 2 2 2

If the shell oscillates, then the normal load component q will be
computed using the formula

q(x,y,t) ph 62" - 2pne a+ q(xy)(13

where p is the density of material of the shell, e is the damping coeffi-
cient, and. qo is the external. load.

We note that along with normal inerti.a forces, the tangential in-
ertia forces should be considered in the equation as well, However, in the
case where loading is not too fast, i.e., if the time for the external forces
to vary by an, appreciable magnitude is suffl.32ently long in comparison to the
longest period of tangential natural oscillations though commensurable with
'the longest period of lateral osc: ,llati ons, then tangent.lal forces of inertia
can be disregarded. An analogous assumption is usually introduced in the in-
vestigation of natural and forceri osuillations of plates and. shallow
shells [4.
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To solve the system of equations (1.1) for a case of normal load
-- defined by formula (1.3) we shall use the Papkovich-Galerkin method.

We shall represent the initial and complementary deflections in
the form of series of functions *j(x,y) satisfying the boundary conditions

Wo(XY) = ( ),xiy)

J=l

w(x,y,t)- = (t.)*(x, y) (i.4)

J=l

Here, t(t) are the unknown time functions.

Functions *j(x,y) are selected in such a way as to satisfactorily
describe the expected mode shape of the oscillations of the shell; in the
following we shall assume that the mode shape of the small natural oscilla-
tions of the shell are such functions. At first, we shall substitute the
series (1.4) into the second equation (1.1) and solve it; we shall then
satisfy boundary conditions of the stress function *(x,y,t) and substitute
it into the first equation. Finally, we will apply the Galerkin variational
method, and the problem will be reduced to a system of ordinary differential

- equations

4o~

dt 2  + dt jj + Jl, 2, m

q((0It0).. rm) j =1,2,... (1.5)

Here ej denotes damping coefficients which, in contrast to formu-
la (1.3), are assumed to be distinct, and wj denotes the frequencies of
small natural oscillations. Nonlinear terms accounting for external load are
included in functions f and qJ.

In the case of a shell with edges freely supported on a contour
with sides a and b (Figure 1), the solution can be written in the form

wo(x,y) - E sin ME sin nV
0 m=l n=l In a b

w(x,y,t) = E Lm(t) sin sin ME
m=l n-l a b



The -nuber of the retained
4 terms of the series dete'nines the
40 ordtr of the differential system (1.5) 00

and. thus Is controlled by the capacity
of the analog computer. The MN-7 com-- 
puter can solve nonlinear equations of
the second order; accordingly we write I /
'the solution in the form

Wo(X)y) = C sin !.X sin y

0o a b

w(x,y,t) - t(t) sin 11 sin (1.6) Figure 1a b

Substituting expression (1.6) into the second of the equations

(1.1) we obtain equations of the following type:

V 22 = F(x,y,t)

(here, time t is considered as a parameter).

Let us consider the case of a cylindrical shell (kI = Ok 2  l/R)
with the following boundary conditions: edges x = 0 and x = a are under

4' compressive stresses Nx = -p, while edges y ' 0 and y = b are restrain-
ed from displacements. The tangential stresses on the edges will be con-
sidered equal to zero. If one takes for 0 the expression

Eha
2  2 x b

0 Q + 2t fcos - + - Cos

32 0 b a2 2

E 1 + 1 sin sin - Y (1.7)

then these boundary conditions will be satisfied "in the mean."

Here, Px and py are constants which can be determined from the
conditions

f x 2

0
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The meaning of the first condition is explicit. The second con-
dition requires that the displacement of edges y = 0 and y = b in the di-
rection of y axis is, "on the average," equal to zero.

Substituting expressions (1.6) and (1.7) into conditions (1.8) we
obtain constants Px and py, after which the function (1.7) can be com-
pletely determined.

We then substitute the expression for this function into the first
of equations (1.1). In order to reduce this equation to an ordinary differ-
ential equation we substitute into it the expressions (1.6) and we apply the
Galerkin variational method. After the usual computation, which is not shown
here, we obtain the following equation:

4 +2e !a + w2(l - t + f(q 0 )
dt

2 2 - vw2 F- + 16 q
0 0(t) (1.9)

p o o i 2 ph

Here, w is the frequency of small natural oscillations of an un-
loaded shell, t(t) is a function characterizing the response, f(tto) is a
nonlinear function which is a part of the representation of initial and sub-
sequent deflections, po is a magnitude having linear stress dimension, and
qo is a certain constant characterizing the magnitude of normal load (for
example, its value for t = 0).

A F(nk), n D P(n,k) (1.10)
a2 I ph/ RO 0 22aa (1 +.n2)

V 164k a k a2
o 1 n n4, 2l (1.11)

F(nik) =( (1+ n ).12)

A 4(l n 2(1l+n)22 _

f( o= t ). + w P(tn) + W2 (1.13)
0 h2- h 0
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For what follows, we shall introduce the following dimensionless
variables:

23te 16q05,-K -, -2 (115)

The meaning of the first three variables is obvious. The next to
the last variable is a decrement of the small natural oscillations and the
last variable represents a deflection of the center of the shell relative to
its thickness under the effect of a load qo applied statically. The equa-
tion (1.9) takes the form

4 + dk+ 1+a3+P
dr 2 xd? o

_L - V + 'P(.) (1.16)

Here, and in that which follows, the bar over t will be omitted.

2. Results of the Solution Obtained by Means of an Electronic Analog
Computer. The equation (1.16) will be solved for the case where the impulse
has an exponential form, i.e., for the case, where

p() = e- c - for T 0(w = r) (2.1)
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Here ; is a constant characterizing the rate of decrease of load

intensity. For example, if cA = 0.5, this metis that :Inensity of the load

- decreased by a factor e within one period of the free linear oscillations.
According to formulae (2.1), the load q increases instantly from 0 to qo
at the instant of time t = 0. In addition, it is necessary to take into
account both normal and tangential inertia forces. A contradiction will be
eliminated if one considers that the expression describes an idealized pic-
ture in comparison with actual conditions when pressure increases rapidly,
yet with a finite velocity (Figure 2),

We shall not discuss here the
effect of tangential inertia forces and
the effects of elastic wave propagation
occurring with large deflections of the '

shell.

If an elastic shell is sub-
jected to impulsive loads, the follow-
ing problems originate:

a) to find the conditions
under which buckling of the shell would Figure 2
not occur,

b) if buckling is impossible,. then to find the greatest deflec-
tions and stresses originating with an impact,

c) if buckling occurs all the same, then to find the greatest de.
flections and stresses which occur after buckling.

Computations were made for a cylindrical panel resting on a square
contour , (n = 1), with P = 0.3 and k = 12. In this case, formulae (1.14)
yield

a = o.162, 0 = o.48 5 - o.69o, y = o.3'24 - 0.9;05 °00 0

When impacted, the shell's behavior depends essentially on the mag-
nitude of the initial load p. In order to investigate this problem we shall
first discuss equation (1.16) for the case of a static load. For an ideal
shell (to = 0), the equation takes the form

(1 - -) + a3 + 13 = - V (2.2)

Dependence of the dimensionless deflection t on V' for various
ratios p/Po are shown in Figure 3. It follows from this graph that for
sufficiently small values of p (approximately for p < o.3P ) and for

= , there exists one elastic equilibrium state of the shell. For



P > O.3Po and 0 there are three ,qui.l.:i11)hium states; one of them cor-
responds to the negative root of equation (2'), ie.,to a deflection of the
shell. with an increase of its curvature; the other two correspond to the
positive roots of this equation.

The intermediate root corresponds obviously to the unstable form
of equilibrium. We note that the upper crItical pressure does not, in the
usual sense of the word, exist in this case, since as a result of Poisson's
effect the shell deflections resulting from curvature increase are present
even with small values of p.

For V' = 0, the roots of equation (2.2) become, with + 0, the
singular points of equation (1.16). Thus, for a square panel and with p <
O.3Po there is one singular point (stabLe focus), while with p > 0.3po
there are three singular points (two stable foci and a saddle). With p <
O.3Po, and regardless of magnitude of Ci there is only one type of motion
possible, namely, oscillations with a gradually decreasing amplitude around
a unique stable focus, i.e., oscillations without buckling. With p > O.3po,
the following three types of motion are possible: 1) for small V -- oscil-
lations without buckling around a focui3 nearest to the origin of coordinates;
2) for large tl -- buckling with subsequent oscillations around the second
focus; 3) for very large ' ._ buckling with subsequent oscillations along
phase trajectories embracing all three singular points. In the last case,
as t + a, generally speaking, convergence to any of the two stable foci is
possible.

Fgr3

-30 o 0

Figure 3
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Figure 4

Figure 4 shows behavior of the shell with ' 0, p - 0.5po, 8 -
0.05x, and ci = 2.0.

If =' - 0.68, buckling does not occur; with = 0.72, there is
buckling with oscillations around the second focus; with ' - 1.50, oscil-
lations occur with a change of deflection sign.

The phase plane diagram of this case is shown in Figure 5 (after
several oscillation cycles, damping with a higher than critical magnitude was
added; this was done in order to accelerate the app~roach of the system to a
stable singular point).

It is of interest to construct
boundaries of a c, / domain of param-
eters with such a characteristic that
when the shell is under the effect of an
impulse having parameters lying in this
domain, buckling of the shell will not
occur. Figure 6 shows the boundaries of
such stability regions for an ideal
shell for various magnitudes of a longi-
tudinal compressive stress. It is clear Figure 5
that stability regions are located on
the side of smaller values of '.
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Figure

Figure 6 Figure 8

It would be of interest to learn the dependence of the critical iii-
pulse on other parameters of the problem. It is easy to see that a dimen-
sionless impulse I can be determined from the condition

I ==
zC

0

The graph shown in Figure 7 was plotted according to this formula.

Figure 8 shows the effect of damping decrement 8 on the boundar-
ies of the stability regions.' As was expected, this dependence turns out to
be weak, particularly when damping is small. Thus, when damping increases
from B. = 0.01 to 8 = 0.50, the critical value of parameter ' increases
no mare than 5%.

Figure 9 and Figure 10 show the dependence of the greatest deflec-
tion max of the shell on the intensity of a normal load for values
p = 0.2Po and P -- 0.5Po. In the second case, during transition of /
through the critical value, the maximum deflect ions increase sharply; how-
ever, with sufficiently strong impulses they differ, in both cases, only
slightly from each other. On the other hand, the difference in behavior of
the shell remains significant with r * w. In this case, for p < 0.3Po,
and after damping of oscillations, the shell returns to the initial state of
equilibrium; however, for p = 0. 3Po, the most probable form of equilibrium
of the shell after damping of oscillations appears to be the buckled state.



11

Figure 9 Figure 10

From the above a conclusion can be drawn that an elastic shell can
withstand, without buckling, impulsive loads exceeding several times the cri-
tical static load. Let us, for example, aonsider a case where P = O.3po.
A static load which originates buckling amounts (in dimensionless magnitudes)to V/ = 0.33. If the load is-impulsive and if ci = 1.0 (during the period
of natural small oscillations of the shell the load intensity decreases by afactor of e) then, as it is shownin n Figure 6, the dynamic load causing
buckling is o = 0.73. Thus, the crit icaldynamic load is 2.2 times greater
than the dynamic one. For loads whose intensity further decreases with time,

this difference will be greater. For example, for cO - 3.0, the dynamic
buckling load amounts to ' - 1.28 which exceeds by 3.8 times the corre-
sponding static load.
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